IOTA
$0.73191 5.11%

The Trust Machine — Part2: A model of the entire DLT space

In the last part of this series of blog posts, we discussed how scarce resource based sybil protection mechanisms are responsible for the scalibility trilemma and how a different form of sybil protection that uses real world trust promises to overcome these and other limitations.

Before continuing to introduce the missing parts of the specification, I want to take a short detour and develop a model that allows us to classify not only all existing but also potentially undiscovered consensus mechanisms.

This model will not only guide our design decisions along the way but it will also make it easier to understand why I consider the proposed consensus mechanism to be superior to existing solutions.

The Fundamentals

To be able to develop such a model, we first need to understand some fundamental facts about distributed ledgers.

1. Two forms of communication

All existing DLTs use two forms of communication that have different properties.

1.1 Point-to-point communicationThe point-to-point communication is based on directly contacting a peer using a dedicated connection. It can be compared to dialing the number of your grandma and then talking to her on the phone.

The benefits of this form of communication are that it is very fast and it is possible to exchange personal information.

The downsides of this form of communication is that it doesn’t scale very well with large networks (imagine having thousands of phone calls at the same time) and that it is necessary to publish ones phone number (IP Address + Port) which opens up attack vectors like DDOS attacks where attackers are constantly calling our number to prevent honest connections from being established.

1.2 Gossip protocolThe gossip protocol is based on the point-to-point communication but instead of contacting each network participant individually, nodes have a limited amount of neighbors that they exchange messages with.

Any received message is ...

Continue on husqy.medium.com
Recent news
No posts found